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Clebsch-Gordan coefficients for the corepresentations of 
Shubnikov point groups 

J N Kotzev and M I Aroyo 
Physics Department, University of Sofia, BG-1126, Sofia, Bulgaria 

Received 22 November 1979 

Abstract. The validity of the Racah lemma concerning the relation between the Clebsch- 
Gordan coefficients of the representations of the groups and their subgroups is shown for 
corepresentations of anti-unitary groups and their subgroups. A method for calculating 
Clebsch-Gordan coefficients for all magnetic groups, based on this lemma, is presented. 
Starting from the Wigner coefficients and using this method, the Clebsch-Gordan 
coefficients for the single-valued and the double-valued corepresentations of the 90 
anti-unitary magnetic (Shubnikov) point groups have been calculated. An example for the 
calculation of the coefficients for the point groups 41'=C4 0 0, 41' = S 4 @  0, 4/m' = 
C4,,(C4), 4'/m = C4h(S4) (as subgroups of 0(3)00) is given. A comparison with other 
possible methods is discussed. 

1. Introduction 

Recently, generalised crystallographic groups, two-coloured (Shubnikov) (Koptsik 
1966, Bradley and Cracknelll972, Eremenko 1975) and (multi)-coloured (Shubnikov 
and Koptsik 1974, Kotzev 1975), have been widely used in group-theoretical analysis 
of different physical properties of crystals with magnetic symmetry. A generalised 
group is called anti-unitary, if the 'colour load' of the group elements contains the 
anti-unitary operator of time-inversion 0 (Wigner 1959). The anti-unitary groups 
consist of unitary, ui, and anti-unitary, ai, operators: 

A H + Ha0 = {gj = uj, gj = aj E ujao}, (1) 

where ui E H  form a subgroup of index 2. The wavefunctions and the operators of 
physical quantities transform in the common way under the action of the operators 
gEA,  

but the mapping g + D " ( g )  is not a homomorphism, i.e. the set of matrices D" = 
{D*(g),  g EA} does not form a representation of the group A. Wigner (1959) called 
this set of matrices a corepresentation. He had proved that for quantum mechanical 
systems with an anti-unitary symmetry, the irreducible corepresentations (not the 
ordinary representations) defined the transformation properties of the wavefunctions, 
the degeneracy of the levels, the correlation between the matrix elements, etc. The 
need for a further development of the corepresentation theory and, in particular, the 
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creation of a generalised theory of the irreducible tensorial sets is obvious. One of the 
basic elements of such a theory is the set of Clebsch-Gordan Coefficients (CGC). 

The CGC for the corepresentations of anti-unitary groups are introduced for the 
first time in Kotzev (1972) (see also 1974), where equations for the calculation of the 
coefficients and examples for the applications of the CGC are given. Orthogonality 
relations for the matrix elements of the corepresentations, projection operators and two 
generalisations of the Wigner-Eckart theorem are also given in Kotzev (1972). The 
CGC for the corepresentations are also discussed in the papers by Aviran and Litvin 
(1973), Rudra (1974), Sacata (1974) and Van den Broek (1979), whose results are in 
good agreement with those of Kotzev (1972). In recent papers (Rudra and Sikdar 1976, 
1977) there are reports about the calculation of the CGC for the Shubnikov point 
groups, but only in the case of even, under space-inversion, basic functions (the tables of 
the coefficients are not contained in Rudra and Sikdar (1976, 1977)). 

Another method for the calculation of the CGC for the corepresentations, 
completely different from the methods given in Kotzev (1972,1974), Aviran and Litvin 
(1973), Rudra (1974), Sacata (1974), Van den Broek (1979), Rudra and Sikdar (1976, 
1977), was proposed in Kotzev and Aroyo (1977) (see also 1978a). The method is 
based on the generalised Racah lemma, Kotzev and Aroyo (1977), and has the 
following advantages in comparison with the methods previously used. (a) The phases 
of the CGC for some different groups are well correlated with those of their common 
supergroup. (b) In many cases the CGC for the subgroups coincide with the coefficients 
of the supergroup. (c) Some of the 'intermediate' results in the process of calculation of 
the CGC (such as isocalar factors, etc) have a self-dependent significance and they are 
not less useful than the 'main' result. The CGC for the single-valued and double-valued 
corepresentations of all 90 anti-unitary Shubnikov point groups (58 black-white and 32 
grey) were calculated and tabulated by this method. The complete tables are published 
in Kotzev and Aroyo (1978a, b, c, d, 1979). 

In the present work, which is a survey of our papers (Kotzev and Aroyo 1977, 
1978a, b, c, d, 1979), the generalised Racah lemma, the calculation method of the CGC 
for the Shubnikov point groups and some examples for the calculation of the CGC are 
given. 

2. The Racah lemma 

The Racah lemma concerns the relation between the CGC for the ordinary represen- 
tations of groups and their subgroups (Racah 1949). We shall prove that an analogous 
lemma is valid for the corepresentations. 

Let B be an arbitrary anti-unitary subgroup of the group A (1). The subduction of 
the irreducible corepresentation D" of the group A on the subgroup B 

(D"&B)={D"(g' ) ,g 'EBcA}  (3) 

is a corepresentation of B. It is a reducible corepresentation in the common case. With 
the help of a unitary reduction matrix S", the subduction (3) is decomposed into a direct 
sum of irreducible corepresentations D p  of the group B c A :  



Clebsch-Gordan coeficients for coreps 2277 

Here the additional index 7@ = 1,. , , , C i  specifies the equivalent corepresentations 
DO, which are contained in (D"4B) C ;  times, and S" are chosen in such a way that the 
matrices of the equivalent corepresentations in (4) identically coincide, i.e. 

DP'"(g') =DP(g'), g'EB, 7 p  = 1,. . . , ci. ( 5 )  

In (4), and further on, the asterisk in brackets will be used for a short notation of two 
equations-the complex conjugation is applied in the case of anti-unitary operators and 
is not applied in the case of unitary operators. 

Applying the transformation (4) to all matrices D"(g),  g E A ,  we can obtain a 
corepresentation D" of the group A,  which is equivalent to D". For g' E B the matrices 
D"(g') are diagonal for the indices p7@, p'7b i.e. we can write 

D" (g ' )pTb .p 'Tb ,b '  = ap~p,p'~b.D'(g')bb', g'E B. ( 6 )  

UX;,apna [ a l a l ,  a2azlapaaI (7) 

The CGC for the corepresentations are defined as the matrix elements 

of the unitary matrix U"'"', which reduces the direct product of the irreducible 
corepresentations D"' and D"' to a quasidiagonal form: 

(U"'"' @ ~"'("''"' = 8 D""*(g), gEA. (8) 
"PQ 

Here the index p p  = 1,. . . , Czl"z specifies the equivalent D", which are contained 
C2"' times in D"' 0 D"', and the matrices U"'"' are chosen in such a way that 

D""-(g) = D" ( g ) ,  g E A ,  p a  = 1, . . . , Cz1"2. (9) 
The same equations (7)-(9) remain valid for the corepresentation D p  of the subgroup 
B, after the substitution A -* B and a + p, where 

UbP$&3ppb e [Pibi ,  PzbzIPppbl (10) 

are the CGC for the corepresentation Dp of the subgroup B. In order to determine the 
connection between (7) and (10) it is convenient to write (8) in terms of equivalent 
corepresentations Dei with the help of (4): 

Here the CGC for the corepresentations of the group A are written in a new basis (the 
index ai is replaced by the triad pi7pibi), 

They are connected with (7) by the transformation 
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or, in matrix form, 

where 

S:,preb IffP7pb), ( s " - ' ) p T 8 b I a z  (ffP7pbIffa) = (ffalapTpb)*. (15) 
In the direct sum Oops S" the matrix S" repeats Cz1"2 times for every Da ED"' 0 
D"2. 

Considering (6), (8), the unitarity of the matrices of the CGC, and using (ll),  it 
follows that 

This equation has the form of the generalised Shur lemma for the corepresentations 
(Dimmock 1963). The elements of a do x dp, matrix, commuting with all the matrices of 
the irreducible corepresentation D p ,  are separated by braces. The matrix is equal to 
zero for P' # p, while for Dp = DO' it should be Hermitian and a multiple of the unit 
matrix D p ( E ) ,  i.e. 

The quantities in parentheses are known as isoscalar factors. 
The requirement of hermiticity for the constant matrix (17) is specific for the 

corepresentations. From the hermiticity it follows that the matrix elements should be 
real, so the isoscalar factors can be written in the form 

(ffipi7pl, f f 2 P 2 7 p p z ;  PPpIffP&p)* = ( f f i P i T p l l  f f z P 2 7 p 2 ;  P P p I f f P d T p )  

5 x/1"2p 1TB1PZr82PPBI"PmPr8. (18) 

If we write all possible equations of the type (16) for a chosen matrix 
corresponding matrix elements (17) will form a unitary matrix 

then the 

-1 
X"'"' =( @ p ' " 2  

BiCPi 

which has a quasidiagonal form (see e.g. table 5 ) .  The matrix X"'"' is an orthogonal 
matrix because in every block diagonal for the indices pb, p'b' ,  there is a submatrix 
x"1u2p (18) with real elements. So the Racah lemma equation, determining the 
connection between the CGC for the corepresentations of the group A and its subgroup 
B, follows directly from (17): 

[ f f i P i T p l b i ,  f f2P27p2bzbP&pb]  
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It is more convenient to use the reverse equation for the calculation of the coefficients 
u p 1 0 2  : 

[Plbl, PZb2IPP6bl 

or, in matrix form, 

where the matrix 

(18), is derived from (17): 

is given by the equation (14) and its matrix elements by (13). 
The following set of equations, for the calculation of the unknown X"'"' elements 

1 ( f fIPIT61,  f f 2 P 2 7 p z ;  P P ~ ( f f P , P T p ) ( f f l P ~ 7 b j a Z P ; 7 & i  ; PP&IffPaPTp) 
"Pa70  

(24) - - Spipzrpi7szpp.pip;ri(;,. ri(iplj * 

So, we prove the validity of the Racah lemma for the corepresentations of anti-unitary 
groups. But in this case X"2"z are orthogonal, i.e. the isoscalar factors (18) are real. 

Starting with the CGC for the corepresentations of a group A and using the so 
generalised Racah lemma, the CGC for the corepresentations of all its subgroups B can 
be determined (Kotzev and Aroyo l977,1978a, b, c, d, 1979). It should be noted that 
the Racah lemma was used for the calculation of CGC for the representations of 
crystallographic point groups for the first time in Batarunas and Levinson (1960) (see 
also Baljavichus et a1 1964). In Konig and Kremer (2973) is discussed the problem of 
phase standardisation of the CGC of the point groups considering time inversion 
symmetry. The authors maintain that all isoscalar factors can be chosen (i) real, (ii) 
positive. It follows from the Racah lemma that for systems with anti-unitary symmetry 
the isoscalar factors (18) should be real. But it is obvious that the condition x L 0 is not 
correct. All the elements of the submatrices ~ " l " ~ '  are positive only when all X"la2 are 
equivalent to unit matrices (in the opposite case CGC will not form a unitary matrix). 

3. The reduction matrix 

We can use the equations (24)-(33) in Kotzev (19741, with the corresponding substitu- 
tion of the symbols, for the calculation of the reduction matrix S" (4), (15). For the 
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corepresentation Dp of the type ‘a’ or ‘c’ (irrespective of the type of D” corepresen- 
tation), we have 

where the summation is over the unitary elements only, and W, = !f for D p  of the type 
‘a’ and W, = 1 for the type ‘c’. 

For D p  of the type ‘b’: 

= 1 {(aa ( a p ~ p b ) ( a ~ ’ j a p ~ , b ’ ) *  + ( ~ ~ ~ ( Y P T ~ ~ ) ( ) ( C Y C I : ’ ( O L ~ T ~ ~ ) * }  (26) 
TB 

where i=jlDP1/2-bl, 6’=lilDP/-b’l .  

The role of the anti-unitary operator is given by the condition 
In all these equations only the unitary operators of the subgroup B are considered. 

(CYU’lcY@T,&’)* (aa I a P T p b ) D ‘ ( U o ) ~ a , D P ( U ~ ) b b ‘ ,  aoCB,  (27) 

where a. is an arbitrarily chosen, but fixed anti-unitary operator, with which are 
constructed all a = uao (1). 

The matrix elements (15) are decomposition coefficients of the basic functions of the 
corepresentation D’, expressed in terms of the corresponding functions of the core- 
presentation D“ : 

ab 

i.e. the equations previously mentioned can be used for the construction of bases for 
corepresentations. 

In particular, the matrices Si, reducing the representations D’ of the rotation group 
to the crystallographic point groups, are given in the tables of Leushin (1968). As in 
Leushin (1968) time inversion is considered, so the results of the book are valid for the 
corepresentations of the anti-unitary group O(3) 0 0 and 32 ‘grey’ Shubnikov groups 
GI’ = G 0 0. The reducing matrices Sa for the 58 ‘black-white’ groups G’ c G1’ can 
be easily derived from them. 

4. Method of calculation for CGC 

All the 122 Shubnikov (magnetic) point groups are subgroups of the generalised full 
rotation group O(3) 0 0 = m a i l ’ .  Only 90 of these groups are anti-unitary-32 ‘grey’ 
G1’= G 0 0 and 58 ‘black-white’ groups G’c  Gl’ .  As was shown in Kotzev (1972, 
1974) (see also Kotzev and and Aroyo 1978b), the CGC for the corepresentations of 
O(3) 0 0 coincided with the well known Wigner coefficients, i.e. 

[itml, i d i l m I  = (itmt, izmzlim). (29) 
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The CGC for the corepresentations of the Shubnikov point groups can be calculated 
using the generalised Racah lemma (21), either directly from (29), or by a successive 
descent down the subgroup chain, 

O h @ @ I G " I . .  . I C 1  
f? 

The generalised Racah lemma (21) and the subgroup chains were used in Kotzev and 
Aroyo (1978a, b, c, d, 1979), where the complete tables of CGC for the single-valued 
and the double-valued corepresentations of the 90 anti-unitary Shubnikov groups were 
published. To save space, the tables (Kotzev and Aroyo 1978b, c, d) give CGC for basic 
functions, even under space inversion. The CGC for odd corepresentations D"- of the 
groups G O Ci can be determined with the help of the known rule 

[alal, a2a21apaal = [a:al, a:az/a+p,a1 

=[CY;al, a:azla-p,a]. (31) 

When the unitary subgroup H U B  contains improper rotations, and the space- 
inversion I is not an element of H, it is necessary to calculate the CGC also for basic 
functions, odd under the space-inversion I. These coefficients are given in Kotzev and 
Aroyo (1979). 

As an example of the method stated above, we will discuss the calculation of the 
CGC for the corepresentations of the anti-unitary group 41' = C4 0 0 and its iso- 
morphicgroupsL?l' = ~4 o O ,  4/m' = C4h(C4), 4 ' /m1  = C4h(S4), considered as subgroups 
of O(3)OO. These groups do not contain the space inversion I, but for physical 
applications it is advisable to construct basic functions, even or odd, under space 
inversion. The CGC for the corepresentations of the four groups coincide for even basic 
functions. The CGC of the groups S4 O 0 and C4h(&) for odd basic functions differ from 
the coefficients for an even basis. So, for these two groups, it is necessary to calculate in 
addition the following coefficients: p1 (odd) x p2 (odd), p1 (even) x p~ (odd), p1 (odd) 
xp2 (even). 

The irreducible corepresentations Do and the basic functions for the four groups are 
given in table 1 (Leushin 1968). Table 2 is a multiplication table for the corepresen- 
tations D p ,  and table 3 contains the subductions of the corepresentations (D'J41'). The 
minimal value of the index j of D', whose reductions contain a definite DO, is the 
quasimoment j ( p )  of D p  (0' in reductions specified by the minimal j are shown bold 

Table 1. Corepresentations and basic functions 

31' (odd) 
4' /m'  (odd) 
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Table 2. Multiplication table 

1 2 3 5 8 

1 [I1 2 3 5 8 
2 2 U1 3 8 5 
3 3 3 [1+2+2]+{1) 5 + 8  5 + 8  
5 5 8 5 + 8  [l + 31 +{l} 2 + 2 + 3  
8 8 5 5 + 8  2 + 2 + 3  P +  31+{1l 

in table 3). For the calculation of the CGC for 4 1 ' ~  m a i l '  it is sufficient to use the 
Wignet coefficients Uli2 withjljz = 2, 2; $, $; 2, $; $ 2  (it follows from table 3). 03/2'3'2 is 
given in table 4 (we will note that in many papers the coefficients are called CGC 
of the subgroup). The full matrix X3/' 3/2 of the isoscalar factors is given in table 5 .  The 
CGC for the corepresentations of the four groups for even bases are written in the form 
of unitary matrices in table 6. The trivial coefficients 

Ell, PzbzlPzlb21= [Plbl, 11/P11b11= 1 (32) 

Table 3. Compatibility table 

are omitted in order to shorten the table. The matrices whose elements are determined 
by the equation 

[P2b2, P1bllpp,b] = (_l)i(p1)+i(pz)-i(pP,) [Plbl ,  PzbzlPPpbI (33) 

are also not given. It should be noted that the symmetry condition (33) does not follow 
from group considerations (see for example Kotzev 1972), but it reflects the connection 
between the coefficients calculated here and Wigner coefficients, for which 

(j2m2, jlmlljm) = (-I)il+iz-i(jlml, jzmzl jm). (34) 

Contrary to (34), in (33) the quasimoment j (&)  depends on p and on pp. This is 
connected with the fact that the repeated corepresentations of the subgroup B, 
Do"@ = D o  , sometimes originate from different corepresentations D" of the group A,  
with different quasimoments j ( a ) .  For more convenient use of the tables, the columns 
of every matrix UpIpZ, whose elements change a sign under the substitution Plbl  -P2bz 
(33), are marked by an asterisk. If the asterisk is absent, the whole column does not 
change sign. 

When one or both basic functions in the Kronecker product Dpl x Dp2 are odd, then 
the CGC for S4 x 0 and C4,,(S4) differ from those given in table 6 by the multiple k l .  
Table 7 is a version of the multiplication table, when the barred indices 6 of the 
corepresentations D p  mean that the CGC can be determined by multiplying the 
correspondent CGC in table 6 by (-1). In the opposite case the coefficients coincide. 
The CGC for the corepresentations of the group 4/m 1' = C4h 0 0 = 41' x i can be 
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Table 7. CGC for 31' and 4'/m'-odd bases 

PIP2 P ? X P Z  0;  XP; P? X P ;  P I P 2  P ? X P : :  P ;  X P : :  P? X P ;  

determined from table 6 using the rule (31). In a similar way the double magnetic 
groups are classified by isomorphism and the CGC for them are calculated in Kotzev 
and Aroyo (1978b, c, d, 1979). 

Acknowledgments 

The authors are indebted to Professor A P Cracknell for his interest and encouragement 
in this work. 

References 

Aviran A and Litvin D B 1973 J. Math. Phys. 14 149 
Baljavichus M Z, Radvilavichus C V and Bolotin A B 1963 Lit. Phys. Sb. 3 389 
_I 1964 Lit. Phys. Sb 4 67 
Batarunas I V and Tevinson I B 1960 Trudy ANLi t  SSR SB Z(2.2) 15 
Bradley C J and Cracknell A P 1972 The Mathematical Theory of Symmetry in Solids (Oxford: OUP) 
Dimmock J 0 1963 J. Math. Phys. 4 1304 
Eremenko V V 1975 Introduction to Optical Spectroscopy of  Magnetic Materials (Kiev: Nauka dumka) 
Konig E and Kremer S 1973 Theor. Chim. Acta 32 27 
Koptsik V A 1966 Shubnikou Groups (Moscow: Moscow University Press) 
Kotzev J N 1972 On the Corepresentation Theory of Magnetic Groups (Kharkov: IRE AN USSR) 
- 1974 Sov. Phys-Crystallogr. 19 286 
- 1975 in Proc. Neutron Diffraction Conf., Petten, The Netherlands 
Kotzev J N and Aroyo M I  1977 Comm. JINR P17-10987 Dubna 
- 1978a X I  Int. Congress of Crystallography Abstract 01.1.15 Warszaw 
_I 1978b Comm. JINR P17-11906 Dubna 
- 1978c Comm. JINR P17-11907 Dubna 
_I 1978d Comm. JINR P17-11908 Dubna 
- 1979 Comm. JINR P17-12948 Dubna 
Leushin A M 1968 Tables of Functions Transforming by the Irreducible Representations of Crystallographic 

Racah G 1949 Phys. Rev. 76 1352 
Rudra P 1974 J. Math. Phys. 15 2031 
Rudra P and Sikdar M K 1976 J. Phys. C: Solid St. Phys. 9 509 
- 1977 J. Phys. C: Solid St. Phys. 10 75 
Sacata I 1974 J. Math. Phys. 15 1710 
Shubnikov A V and Koptsik V A 1974 Symmetry in Science and Art (New York: Plenum Press) 
Van den Broek P M 1979 J. Math. Phys. 20 2028 
Wigner E 1959 Group Theory (New York: Academic Press) 

Point Groups (Moscow: Nauka) 


